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/

This paper considers analytical issues associated with the notion of

the energy release rate in quasi-static elastic crack propagation.

1 Introduction

When a crack in a deformed elastic solid lengthens, the new free surface

created requires energy for its formation. If the crack propagation process is

slow enough to be treated as a quasi-static , continuum mechanical models permit

f the calculation of the rate at which energy is made available for the generation

of new free surface in term of the solution of the governing equilibrium problem

corresponding to the deformation of the cracked solid under given loads.

The essential physical ideas involved in this calculation, as well as the

resulting formula, have been known for some time. One may refer, for example, to

the work of Atkinson and Eshelby (1], Budiansky and Rice [2), Eshelby [3,4], Rice [5]

and Sanders [6]. To make clear the most appropriate underlying mathematical assump-

tions, however, seam to be more troublesome. Gurtin (71 has recently undertaken

to give a precise analysis in such a way as to be valid for two-dimensional problem

in nonlinear as well as linear elasticity. Ris arguments, however, rely on a

1 The results comunicated in this paper were obtained in the course of an investiga-
tion supported In part by Contract N00014-C-0196 with the Office of Naval Research
in Washington, D.C.

2 That is, if Inertia effects can be neglected.
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relatively large number of asmption, some of which pertain to properties of

the solution to the relevant boundary value problem vhich-ideally, at least -

should be deduced, rather than assumed.

In the present note, we consider the simplest possible case of quasi-static

elastic crack propagation in order to illustrate and clarify the purely analytical

issues involved. We treat the crack problem in anti-plane shear' according to the

linearized theory of elasticity. The argument given here is entirely different

from, and involves substantially fever assumptions than, that given in [7].

2. The crack problem

We consider a homogeneous, isotropic elastic cylinder in an equilibrium

state of anti-plane shear. The outer boundary of a cross-section of the cylinder

is a piecewise smooth simple closed curve C, while the inner boundary consists of

a line segment of length I (the crack). With cartesian coordinates chosen as in

Figure 1, the crack is described by x2 -0, O:Sx 1 S . We denote by R(t) the

region consisting of points on or inside C which do not lie on the crack.

According to the linearized theory of elasticity, the out-of-plane displace-

ment u - u(x, x 2) of particles n the cross-section of the cylinder is a harmonic

function:

lu U +U,22 -0 on .() (2.1)

Here a coima followed by, a subscript indicates partial differentiation with respect

to the corresponding cartesian coordinate. On the outer boundary,

1Anti-plane shear refers to the class of deformations of a cylinder in which the

displacement vector is parallel to the generators of the cylinder and independent
of axial position. For a discussion of anti-plane shear (or "Mode III" displace-
sent fields) in the theory of elasticity, see [8).

L _* --__



-3-

au f(a) on C (2.2)

where the constant p> 0 is the shear modulus of the elastic material, f

represents the given traction on C, and a is arc length, measured positive

counterclockwise. The derivative in (2.2) is in the direction of the unit outward

normal vector n on C. The faces of the crack are to be traction-free, so that

u O at x2 0± 0 <x< < (2.3)

Further,

u is bounded on I(Z) (2.4)

In the model of quasi-static crack propagation envisaged here, the crack

lengthens in time by propagating to the right only; I is taken to be a strictly

increasing function of the time. Without loss of generality, we may then in fact

identify I with the time.

We assume the existence of a solution u-u(.x;L) =u(x,x 2 ;t) to the

problem (2.1)-(2.4) which is defined and three times continuously differentiable

with respect to (x,l) on the three-dimensional region characterized by

LEB(t), 0111 0 , for some fixed, positive RO such that the point (Lt,O)

lies inside C. It is further assumed that u and all of its derivatives of order

up to and including three possess limits as a point (xl,O) on the crack is ap-

* proached from above, provided 0 <xl I . These limits are assumed to be continuous

functions of (x1 ,t) for o<x 1 < , 0 < L Finally, we make analogous assump-

tions for the corresponding limits as the crack is approached from below.

Except for cases corresponding to very special choices of the loading f,

Vu is unbounded at both crack-tips.
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We shall first prove that the energy in R(l) associated with u,

defined by

E(L)-f 1 dul, A , o Z (2.5)

is finite for each I , and satisfies

2E(t)- ff(a)u(x;t)do , 0 < t 0  (2.6)
C

It follows imnediately from (2.6) that there is at most one solution of the

prescribed smoothness to the boundary value problem (2.1), (2.4), apart from an

arbitrary additive constant. The boundedness condition (2.4) of course plays a

central role in the argument leading to (2.6) and the resulting uniqueness.

Our objective is to study the so-called "energy release rate" em() defined

by

£(t)-ff()u(x;t)do-E(t) , OI.t 0 • (2.7)
C

where the dot indicates differentiation with respect to t In particular

_u

u(x;t) " t . (2.8)

&(L) represents the excess of the power supplied by the external traction over

the rate of increase of stored energy, and thus may be interpreted as the rate at

which energy is made available for the formation of new free surface during the

process of crack propagation. Using only the assumptions stated above we shall

prove that

11n particular, we make no assumptions about i beyond those stated in the smoothness
hypotheses described above.
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2(~ni 1 ~~j u )ds)do (2.9)
r..o r l ~ ,

r

where r Is a circle of radius r centered at the moving crack-tip x1  Z,r

x2 -0, a is arc length on r (increasing counter-clockwise), and n is the
r O

unit normal vector on r which points away from the crack-tip; n1  is ther1

x1 -co m p onent of n . Thus C(L) depends only on the local behavior of Vu

near the moving crack-tip (and not directly on 6 ). We shall also prove that

e () 2o.

In order to establish these results, we need some estimates pertaining to

the behavior of u and 6 near the crack-tips. In this connection it is neces-

sary to observe first that i satisfies

Aa-0 on R(t) , (2.10)

7-0 on C , (2.11)

-0 'at x 2 =0 ' 0x0L " (2.12)

These follow from (2.1)-(2.3) by differentiation with respect to I , provided

use is made of the fact that the traction f is independent of I . If 6 were

bounded at both crack-tips, and therefore on R(L) , the uniqueness result alluded

to above would imply that As- constant on R(t) . It will turn out, however, that

is In general unbounded near the moving crack-tip.

We now consider the local behavior of harmonic functions near a crack tip.



3. Crack-tip estimates.

Let S be the plane slit disc described in polar coordinates by

fi-((r,6)jo<ra,-T<G<n] (3.1)

Further, let r , <r Sa , at present be the circle of radius a centered
r

at the origin, and denote by O< , Ora , and B , 0<r<a , the sets ofr r
those points in & which lie respectively inside and outside r'

r

Let cp- (r,6) be a function defined on & with the following properties:

A. YECQ), and c& and its derivatives 1 and yr possess limits as

6- ±r, O<rsa ; these limits are continous functions of r, 0<r.r.a

B. cp is mean-square bounded on h ; i.e., there is a constant m >0 such

that

1 f 9 2dsS&m2 
, O<rfa , . (3.2)

2nr r
r

C. 1 n 1& (3.3)
rr r Tr 3eO 0  on £.r

D. Y,(r,±n) -0 0 < r a . (3.4)

We note that f has property B if y is bounded on 6

The principal conclusions concerning functions with properties A -D

relate to the energy distribution associated with r+ and form the basis of the

analysis to follow. The energy E(r) in .r associated with y , defined by

'Derivatives with respect to r or 0 are indicated by subscripts without

coafis.



E(r)inf VY, 2~ , O~r~a ,(3.5)

r

is finite and satisfies

E(r)-f q2cdsatO 0 < rla .(3.6)

r 2r

~er

E(r) -0 as r-O (3.7)

To prove this proposition1 , we begin by setting

F(r) - f jjVc~ 2dA 0 O<r <a (3.8)

r

A standard application of the divergence theorem, together with (3.3) and

(3.4), leads to

F(r) -g(a) - g(r) ,(3.9)

where - 30

g(r)j cy; de < OrSa (.0

r

Moreover, from (3.9),(3.8),

rr

1Th. argument that follows is essentially the same as that used in a more
general setting in [9).
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so that g(r) is monotone nondecreasing. It follows that - gg(O+)<co .

From (3.10),(3.11) and Shwarz's inequality, one obtains

g2(r) s. f pds; qp ds A ~g (r)f Y ds (3.12)

r r r

By (3.2) (property B),

S2(r) n npm 2rg' (r) , O<rAa . (3.13)

Suppose first that g(O+) <0 . Then for some r2 , O< r 2 < a , one has g(r) <0

for 0<rsr2 . Integrate (3.13) from r to r where 1<r < r  obtaining

log r2 n gJPm 2  1(l n LM2 (3.14)

or

2 (3.15)

2  log ? 2r1

Let rl 1O to get g(r2 ) 0 which is a contradiction. Next suppose that

g(0+) >0. Then g(r) >0 for 0<rsr2  for some r. . 04r 2 <a. Integration

of (3.13) nov gives

2
gl 'ior2 ' 0<r l r2 , (3.16)

from vhich we conclude g(O+) - 0 , again a contradiction. Thus

g(r)-, 0 as r 0 (3.17)

,M-4,'
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From (3.17), (3.9), it follows that

F(0+) = g(a)

is finite. But(*ee(3.5),(3.8),(3.9)),

E(r) - F(0+)-F(r) g(r) , O<rsa ; (3.18)

(3.18), (3.10) and (3.17) establish (3.6), (3.7) and the proof is complete.

4. Properties of u,4 near the crack-tips.

Returning to the original boundary value problem (2.1)-(2.4), we suppose

first that t is a fixed but arbitrary value of I with 0 << 0 Let a be

a constant such that 0<f-2a<1+2a<t0 0 denote by A the Z-interval

[T-a, i+a], and note that the (moving) circle r- r (z) of radius a centered at
r r

the right crack-tip lies in the interior of the boundary curve C and never encloses

the left crack-tip, provided 2 lies in A . In this section we shall consider the

solution u(x;t) and its derivative a(x,l) only for values of t in the interval

A.

With a as above, let Fr- rr() 0 < r s a , be the circle of radius r

centered at Xl =1,2-0 , and let 6 stand fot the set described by (3.1),

where r,e are now (moving) polar coordinates centered at the right crack-tip.

As in the preceding section, b denotes the set of those points in L which
r

lie inside rr, O<r<a . Define

v(r,O;L)-u(1*rcose, rsinO;1) , O<r.%a,-Tr:Osn, LEA, (4.1)

and note that

-" i
''

- - -
r '

. .. " ItlI I I I I I I I I ' I I - . ...
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lo

- (r,;) u,+ (4.2)

In view of the assumptions made on u in Section 2, v clearly has properties

A-D for each t in A ; in particular, by (2.4), there is a constant m(l) such

that

L v2 (r,G;L)dssm 2 ( L) , <rsa , LEA (4.3) 1
2nr r

r

In view of the proposition in Section 3 concerning functions with properties

A-D, it follows from (3.7), (3.5) with (r,b) -v(r,G;1) that

f Vv2(4)y dA-O as r-O LEA (4.4)
r

From (4.2) and the fact that u and a are harmonic in L and have

vanishing first normal derivatives on the crack-faces (see (2.1), (2.3), (2.9),

(2.11)), it follows that v has properties A,C,D, for each Z in A . We show

next that v has property B (see (3.2)) for each such 9 . To this end, let

Z and I' belong to A , with 9/ #X . Define

V~,0t~')v ~ t~ t -v r P ;t )  <r:&a, -naO6-,n, Z, , 'E A, E' 0 1. (4.5)

9.- 9.'

Clearly V has properties A-D, and hence, choosing y= V in (3.6) and making

use of (3.7), one has

f W dsO , O<rra , 1,.t'EA , Z #t'. (4.6)
r
r

The idea now is to let 9' L with r fixed in (4.6). To carry out this limit

I1n fact, vi S m on .
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process, we first observe from (4.5) that

V(r,8;LL' ). r,8;t) as 1 1 , for each fixed (r,e) . (4.7)

Moreover, from (4.5), the mean value theorem, and the smoothness properties that

v inherits from u through (4.1), it follows that

IV(r,0; ,')I LM1 (r) , O<ria , - T , Z', tEA, 9'#L (4.8)

and

IVr(r,8; 1,.')I LM2 (r) , O<r -Sa , -nTB T , !. , Z' E A. (4.9)

where

Mmax (r,;X) M2(r)- max r (r,0;X) I O<rsa (4.10)
-nT:S e- n -n n r 'S 4.10Tr

XE A E A

It follows that

IVV IM on r for each r, O<rsa, and for all L',LEA, t'# . (4.11)r1: l2 r

Thus the pointwise convergence in (4.7), although not necessarily uniform, is

1dominated. It follows from a standard theorem that the limit as Z -L may be

taken inside the integral in (4.6), yielding

f vv doO , O<rfa , LEA . (4.12)
r

r

Thus

?1

See [10], p. 405

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ._ _ _ _ _ _--
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d (f Zv) 2O 0 O<r -a , EA ,(4.13)

r

so that the integral in (4.13) is a nonnegative, monotone nondecreasing function

of r . It follow that this integral is a bounded function of r , O<r~ a

i.e. there is a constant n(l) aO such that

1 f 2dsSn2(l) , O<ra , LEA . (4.14)
2nr r

r

Thus ' has property B for each Z in A. The main proposition of Section 3

may now be invoked with e-v ; from (3.6), (3.7) we find that

I Iv412dA. 0  as r.o , EA. (4.15)

br

We note that (4.3), (4.14) imply

f v2ds - O(r) f 2 dfh O(r) *as v-)O , 1EA . (4.16)
r r
r r

Finally, we observe that, since the choice of the center T of the

interval A was arbitrary, each of the four limiting results (4.4), (4.15),

(4.16) holds for every I in (0,10).

It may be remarked that a more refined argument, using more detailed

properties of v , can be used to prove that 0 is actually continuous at

the moving crack-tip1, and not merely mean-square bounded as asserted in (4.14).

1Continuity of the analogous physical quantity in plane strain at the moving
crack-tip is assumed in [7].
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Since (4.14) is sufficient for our purposes, we omit the proof of the continuity

of .

As remarked earlier, Vu is in general not bounded - or even mum-square

bounded - near a crack-tip. According to (4.2) and (4.14), therefore, 1 would

in general not be bounded near the moving crack-tip.

Analysis parallel to that given above can be carried out near the left

(fixed) crack-tip. One sets

v(r,O;L)uu(rcosO,rsinb; t) , (4.17)

where r,6. are now polar coordinates centered at the origin. In contrast to

(4.2), we have

-u (4.18)

If r is a circle of radius r centered at the origin while t is ther r

interior of r with the crack deleted, one can again show thatr

f w2do-O(r) f 12 2do-O(r) as r.O , O<<t 0 , (4.19)
r r
r r

as well as

~2

f IVwj dA O, IvfjI2 c o.0 as r O , 0<t (.00 (4.20)
r r

We omit the details.

1 Again, i can be shown to be continuous, and not merely mean-square bounded,j at the left crack-tip.

-I_._____.....__________.____________________...._
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E5. nergy releade rate.

It is clear from the local considerations of the preceding section that

the energy E(1) of (2.5) associated vith the boundary value problem (2.1)-(2.4)

is finite. In order to study E(t) , we let (l) 0 2) be circles of radius
r r

r , 0 <r Sa , centered at the left and right crack-tips, respectively . Let

R (1) be the set of those points which lie in 9(t) but outside i(t)+ r(2)
r r r

0 < r S a . An application of the divergence theorem to the integral of

(p/2) Vu, 2  over R (L) , accounting for the presence of the crack and making
r

use of (2.1), (2.3), followed by the limit r-*O , leads easily to the conclusion

that

EL)If f()u(x;1)da , O<£L 0 , (5.1)
2C

as claimed in (2.6).

Since the given traction f on C is independent of Z , it follows

immediately from (5.1) that

2(t) -f f(o)(x,L)do . (5.2)
C

An alternative expression for i(L) may be obtained from (5.2) by proceeding as

follows. From (5.2), (2.2),

l~ere a Is assimed small enough to keep 1) and r(2) inside C and to
- a a

assure that each circle encloses only one crack tip.
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f 2u d Cu

I r

-f iA-Lu ds(53

)
r

au
f ji'n uds,(.)

r(2) n(53
r

where S r r( 2 )  and n is the unit normal on S , taken outwardwh r  r r ' -r

with respect to R (1). The arc lengths and integrals over r(l) , r 2 )  arer r r
taken counterclockwise. The divergence theorem, together with the facts that

u and u are harmonic and satisfy the free surface conditions (2.3) and (2.12)

on the crack faces, permits one to write

u u dsijuds- .if~&.Ad * (5.4)

S S
r r

Making use of (2.11) in (5.4), we find that

fIP -Ln ds ) 'n uds+ f )k Luuds, (5.5)I Sr r

so that (5.3) may be written in the form

2i(,) - I (r; 1) + I (r,L) (5.6)1
1 2

where

'The representation (5.6), (5.7) for E(L) is the analog in anti-plane

shear of Sanders' I-integral in plane strain or plane stress (see Eq.(4) of (6)).



jt -16-

I (r;t o f P Lu ds a 1,2 (5.7)
Gr(cI\n~~r

Equations (5.6), (5.7) show that i(t) depends only on the behavior of u

and , near the crack-tips.

Consider first the integral 12 from (4.1) and (4.2),

12= 2J+l 2 , (5.8)

where

J(r; u, - (u)ulds (5.9)*JrI. f(2) L u,1a 1

R2 =n2 (r;1) f g(v r -*v)ds . (5.10)

r(2)r

A direct calculation which makes use of the facts that v, 4 are harmonic and

SVol 6vanish at 8 =±n reveals that 3H2/3r -0, so that the integral in

(5.10) is independent of r: H2 (r;.) - 12(t). If one now integrates (5.10) with

respect to r over the interval 0cr<r , rl < a , one finds.

r? 2(t) = f P(Vr -rv)dA . (5.11)Grx

The Schvarz inequality now gives

i2

r

'ths finiteness of the integrals on the right in (5.12) assures the existence of
the integral in (5.11).
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From (4.14) and (4.3) one finds that

2AA ~ 2 Mr2 f 2 n 2 1)r2 (5.13)

rI  r1

so that (5.12) yields

H~~Z ~) 2 m .2 f I'd +n~(~ vI~ (5.14)
2 r

Letting r -0 in (5.14) and using (4.15), (4.4), we find

H 2(1) -0 ,(5.15)

so that, from (5.8)

lim 1 2 (r;t) =lim J(r;L) (5.16)
rl0 r-O

As to the integral 11(r,Z) , one shows by a similar argument based on

(4.18), (4.19) and (4.20) that

lim 1 1(r;L)-0 (5.17)

Letting r-lO in (5.6) and using (5.16), (5.17), and (5.8), we obtain

M( )-li J(r;L) (5.18)- r -+ 0 (.8

where J is given by (5.9). Note that J does not involve a and depends only

on the behavior of u near the moving crack-tip.

A more convenient representation for J can be found as follows. Since

by (4.1),
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U v Cosa - - v sin , (5.19),i r ra

one may write (5.9) as

( ( *** 1  3 1
J.- J r r rvesin )- v (vr cos 6 v sin ) ]ds (5.20)

2 r( 2) r r r b 3r r r .
r

The fact that v is harmonic can be used to eliminate v rr from (5.20); integra-

tions by parts and the boundary conditions vo a0 at 6- tn then give

j f (. -uu1 n ds (5.21)r(2) 21a
r

Here n is the unit normal on r pointing away from the crack-tip, andr !

n- cos 6 is its x1 - component. The integral in (5.21) is the usual J-integral

of fracture mechanics discovered by Eshelby (4] and independently by Rice [111.

As these authors have shown, and as is easily verified, J is independent of r.

In fact, the integral

J-J(t)-fP( - IVu u2n 1 u) ds 2u(5.22)

is independent of the path r , as long as r is a curve in R(Z) which begins

and ends on the faces of the crack and surrounds the right crack-tip but not the

left one. Thus (5.18) may be replaced by

(t)-J(L) , (5.23)

with J(t) given by (5.22). In view of (5.2), (5.23) the energy release rate of

(2.7)is given by
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emt - to -J t) (5.24)

Thus the power delivered by the external load is divided equally between the

tasks of increasing the stored energy and making energy available for crack

propagation.

Equations (5.24), (5.22) show that &(I) (and i(t)) depend only on the

local behavior of Vu near the moving crack-tip.

In order to show that e(l) k0 , it is convenient to introduce a function

,') as follows: for 0 < 1' : <1 0  set

19 (X,') I ju(,j)j2 dA-ff(d)u(x,1') do (5.25)

R(t) C

and let

PM -90t.0L) (5.26)

1
P(t) is called the potential energy in 9(t) associated with u. Moreover,

(5.1), (2.5) give

P(t)--E(1) , (5.27)

so that

()- ) .im (5.28)

Let 1.(1), i-(2) be circles of radius r centered at (0,0) and

(1,0) as before, and let -(3) be a circle of radius r centered at (Z ,0)r

It follows from properties of u(;x,L already established that P (t, t'), P(L)
are finite
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Wher Oc L' t. Let & (&,') be the set of those points In R(t) which

lie outside r(l) + r(2) + r3) . Set
r r r

(2,2'9 ) f , IV(A,' ) 12 dA f (o)u(x,L' )do , 0 < ' I < . (5.29)
ra rot. t L 2 C

The divergence theorem and (2.1)- (2.3) make it possible to show that

IF~ d -q (LL) - f t, ! I IVu(,, L) -w(x" le) 12dA

+ Q(ttf) Q r(t,t') , (5.30)

where

Qr(It') u -u (Lt)] 3u (,t) ds (5.31)
r r(j)+r (2)+r(3) an

r r r

.4m

By using the crack-tip estimates of Section 4, oue can show that Qr(2,2 ).0

as r-0. Letting r.O In (5.30) and notiug 0 (9,A')' 0(1,1') as : 0,

we obtain

'q(ct,"t') a (t9 ) ) , O(Z' < . (5.32)

But

I vu(xj)2dA f IIVUx,2d 9 (5.33)
2(2 2)

so from (5.25), (5.26), (5.33),

0 WA' '2 (5.34)
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Combining (5.34),(5.32) gives

pot,) >p(t) 0< t'< t , (5.35)

so that P(t) is nonincreasing with t . Thus from (5.28), i(l) 20 , and

from (5.24), e(P.) ZO

The inequality (5.35) may be viewed as an ilrstance of the minimum principle

associated with the boundary value problem (2.1)-(2.4) (the principle of minimum

potential energy).
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